Контроллер заряда солнечной батареи: описание, виды, преимущества, как подобрать

Дата публикации: 26 мая 2020

Солнечный контроллер заряда – это электронный прибор, отвечающий за заряд аккумуляторной батареи. Устройства различаются по конструкции, мощности, номинальному напряжению, силе тока заряда и принципу действия.

Принцип действия солнечного контроллера

Необходимость контроллера

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства.  Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Функции контроллеров

Аккумуляторы — капризны, при неправильной эксплуатации они теряют свою емкость или вовсе перестают работать. Это происходит по двум причинам:

  • перезаряд
  • недозаряд

Первая причина обусловлена тем, что напряжение заряда больше номинального напряжения аккумулятора. Если не отсоединить устройство в тот момент, когда оно зарядилось до номинального значения — происходит вскипание жидкости в его ячейках с дальнейшим испарением жидкого электролита. А это служит причиной потери емкости. Ячейки с электролитом могут утратить герметичность, вследствии высокого давления, образующегося при кипении жидкости. В таком случае девайс теряет свойство накапливать энергию.

Вторая причина заключается в том, что аккумуляторы не любят, когда их заряжают не полностью. И через несколько циклов заряда разряда могут потерять первоначальную емкость. В большинстве случаев это обратимый процесс, все зависит от изношенности батареи. Утрата емкости обусловлена так называемым «эффектом памяти». Особенно это явление актуально у свинцовых накопителей. Существуют экземпляры с электродами из других материалов, которым этот эффект практически не присущ. Но стоят они дороже. Свинцовые накопители хороши тем, что могут давать большие пиковые токи, что хорошо при питании двигателей и потребителей индуктивного и емкостного характера.

На практике аккумуляторы подключают к панелям последовательно с контроллером заряда. Это приспособление помогает функционировать батареям в оптимальном режиме независимо от всего и оберегает их от преждевременного износа. Эти модули следят за состоянием батареи и в зависимости от этого подают на клеммы определенные значения напряжения и тока. При дневном освещении модуль фотоэлементов генерирует определенную мощность. Ее значение указывают в инструкции, но следует помнить, что она была снята в режиме холостого хода. При подсоединении аккумулятора они уменьшатся, так как он имеет некоторое внутреннее сопротивление. Рекомендовано производить заряд током в 10 раз меньшим, чем мощность батареи. На практике этого сложно добиться так как сопротивление аккумулятора меняется при заряде. В разряженном состоянии оно наибольшее, в заряженном — наименьшее. Поэтому правильно регулировать зарядный ток динамически.

Как работает контроллер зарядки аккумулятора?

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

схема контроллера заряда аккумулятора от солнечной батареи

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Некоторые особенности контроллеров заряда солнечных батарей

В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:

  • От неправильного подключения полярности;
  • От коротких замыканий в нагрузке и на входе;
  • От молнии;
  • От перегрева;
  • От входных перенапряжений;
  • От разряда аккумулятора в ночное время.

Кроме того, в них устанавливаются всевозможные электронные предохранители. Чтобы облегчить эксплуатацию гелиосистем, контроллеры заряда имеют информационные дисплеи. На них отображается информация о состоянии аккумуляторной батареи и системы в целом. Здесь могут быть такие данные, как:

  • Степень заряда, напряжение АКБ;
  • Ток, отдаваемый фотоэлементами;
  • Ток для заряда батареи и в нагрузке;
  • Запасённые и отданные ампер-часы.

На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.

Некоторые модели контроллеров для солнечных батарей имеют таймеры для активации ночного режима работы. Существуют сложные устройства, управляющие работой двух независимых батарей. В их названии обычно есть приставка Duo. Стоит также отметить модели, которые умеют сбрасывать лишнюю энергию на тэны.

Интересны модели, имеющие интерфейс для подключения к компьютеру. Так можно значительно расширить функционал наблюдения за гелиосистемой и управления ей.

Задачи, которые решает контроллер заряда солнечной батареи

  • Отключает АКБ, как только она полностью зарядится;
  • Регулирует напряжение и ток заряда в зависимости от уровня заряда АКБ и нагрузки;
  • Отключает потребителей, когда заряд снижается до критического минимума;
  • Повторно подключает потребителей, когда уровень заряда восстановится;
  • Осуществляет автоматический контроль за ходом зарядки;
  • Подключает фотоэлементы для зарядки в авто-режиме.

Использование этого простого прибора позволяет существенно увеличить эксплуатационный ресурс аккумулятора , а так же получить от солнечных батарей их максимум.

Основные виды

  1. PWM (ШИМ) контроллеры заряда . Позволяют добиться 100% зарядки АКБ. Но в следствии отсутствия механизма преобразования излишков напряжения в силу тока и технологии слежения за точкой максимума, данный тип контроллеров не в состоянии выжать из солнечных батарей все на что они способны. Устройства данного типа как правило используются в небольших системах мощностью до 2 кВт.
  2. МРРТ контроллеры заряда . Самые продвинутые и сложные на сегодняшний день. Они эффективны и надежны в работе, обладают расширенным спектром настроек и различными элементами защиты. Применение контроллеров данного типа позволяет ускорить окупаемость солнечных электростанций. За счет механизма преобразования напряжения в силу тока и интеллектуальной системой слежения за точкой максимума, их эффективность на 20-30% выше, по сравнению с предыдущими моделями. Устройство данного типа используются как в маленьких так и в больших (промышленных) объектах. А так же в местах с ограниченной площадью для размещения солнечных батарей в ситуации когда необходимо получить от них максимум (к примеру, на автомобилях, катерах или яхтах).

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию.

Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

Характеристики устройства:

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

МРРТ-контроллер1

PWM-контроллер

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

Характеристики устройства:

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от –25 до 55 ºC.
  • Возможность зарядить АКБ с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

PWM-контроллер

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны.

Где устанавливается

Подключается контроллер между аккумулятором и панелью солнечных батарей. Однако, в схему подключения обязательно должен входить инвертор для солнечной батареи. Инвертор используется для преобразования постоянного 12 В тока, который идет от солнечной батареи, в переменный 220 В, текущий в любой розетке в доме, монтируется после аккумуляторной батареи.

Также важно наличие предохранителя, который выполняет защитную функцию от различных перегрузок и замыканий. Поэтому, для того чтобы обезопасить свой дом, необходимо произвести монтаж предохранителя. При наличии большого количества солнечных панелей желательна установка предохранителей между каждым элементом схемы.

На рисунке ниже показано, как выглядит инвертор (черная коробка):

Система преобразования

Стандартная схема подключения выглядит примерно так, как представлена на рисунке ниже.

Схематическое подключение

Схема показывает, что солнечные панели соединены с контроллером, электрическая энергия поступает в контроллер, а затем накапливается в аккумуляторе. Из аккумулятора она снова идет в контроллер, а после поступает в инвертор. А уже после инвертора идет распределение на потребление.

Как осуществить подключение самостоятельно

Подключить контроллер заряда MPPT для солнечных батарей достаточно просто. Для этого следует понимать принципиальную схему подключения, уметь в ней разбираться и ориентироваться, а также соединить все провода и элементы с полным соблюдением полярности, то есть «плюс» соединить с «плюсом», а «минус» с «минусом».

На рисунке ниже можно увидеть специальные отверстия с «плюсом» и минусом», собственно следует правильно засунуть в них нужные провода.

МРРТ-контроллер2

Более подробная схема представлена ниже.

Схема подключения

Схема подключения довольно-таки проста, важно соединить все элементы, соблюдая полярность, а также необходимо учесть, чтобы они безопасно располагались в доме и не угрожали жизни. Справиться с такой задачей сможет каждый.

Возможно подключение нескольких аккумуляторов, однако здесь присоединять необходимо смешанным способом, а именно: группа аккумуляторных батарей подключается между собой параллельно, а к контроллеру последовательно. Подобную схему можно увидеть на рисунке ниже.

Система подключения

Как видно из схемы, количество аккумуляторов не ограничено. Однако, следует понимать, что при таком числе необходимо приобрести соответствующий инвертор, который будет способен справиться с такой большой нагрузкой.

Как выбрать контроллер для солнечной батареи?

Это очень важное устройство, которое достаточно сложно правильно подобрать среди великого многообразия. Чтобы взять то что действительно нужно придерживайтесь следующих данных:

  • Мощность батареи. На выходе общая мощность не должна быть больше показателя тока.
  • Уровень входящего напряжения. Он должен быть больше на 20% чем U АКБ, которое производится преобразователями света в ток.

Контроллер заряда солнечной батареи на данный момент выпускается всех мастей. Он может обладать защитой от плохих погодных условий, больших нагрузок, замыканий, перегреваний и даже от неправильного включения. Например, такое может случится, когда путаете полярность. В результате брать нужно такое устройство, которое будет иметь несколько уровней защиты.

Контроллер заряда для солнечных батарей своими руками

Если вы задумывались над альтернативным способом получения энергии и решили устанавливать солнечные батареи, то наверняка хотите сэкономить. Одной из возможностей экономии — сделать контроллер заряда своими руками. При установке солнечных генераторов — панелей, требуется много дополнительного оборудования: контроллеры заряда, аккумуляторы, инвертор для перевода тока под технические стандарты.

Если нет возможности купить…

Конечно, зачастую прибор, собранный своими руками, будет хуже, чем аналогичное устройство, произведенное на заводе. Но сегодня мало кому можно доверять. И дешевые контроллеры для солнечной батареи, поставляемые из Китая, также могли быть собраны в какой-нибудь подсобке. Так зачем покупать устройство, в качестве которого Вы не уверены, если есть возможность соорудить его дома.

На рисунке 1 приведена простейшая схема, воспользовавшись которой Вы сможете своими руками собрать контроллер, пригодный для зарядки свинцово-кислотного аккумулятора 12 В с помощью маломощной СБ с током в несколько ампер. Изменив номиналы используемых элементов, Вы сможете адаптировать собранный прибор под АКБ с другими техническими характеристиками. Следует отметить, что данная схема предполагает использование вместо защитного диода полевого транзистора, управляемого компаратором.

Рисунок 2. Позаботимся о корпусе
Принцип работы достаточно прост: когда напряжение на АКБ достигнет заданного значения, контроллер остановит зарядку, в случае его снижения ниже порогового значения, зарядка будет вновь включена. При напряжении меньше 11 В нагрузка будет отключаться, а при напряжении больше 12,5 В, наоборот, подключаться к аккумулятору. Этот небольшой прибор спасет Ваш аккумулятор от самопроизвольного разряда в отсутствие солнца. На рисунке 2 представлен уже собранный комплект, состоящий из двух аккумуляторов, DC/DC-конверторов и индикации.

Контроллеры заряда солнечной батареи, собранные своими руками по более сложным схемам, смогут гарантировать Вам надежную и стабильную работу. Поэтому, если Вы чувствуете в себе силы, то ниже представлена еще одна схема. Она состоит из большего числа компонентов, зато и функционирует без «глюков» (рисунок 3).

Рисунок 3. Наиболее надежная схема
Самодельный контроллер, собранный по данной схеме, подойдет для системы энергообеспечения, работающей, как от СБ, так и от ветрогенератора. Сигнал, который приходит от используемого источника альтернативной энергии, коммутируется реле, которое в свою очередь управляется полевым транзисторным ключом. Для регулировки порогов переключения режимов используются подстроечные резисторы.

Не бойтесь экспериментировать, ведь у самых лучших умов человечества тоже случались ошибки и падения, поэтому, если с первого раза Вам не удалось собрать своими руками надежный контроллер, не отчаивайтесь. Попробуйте еще раз, и, возможно, со второго раза у Вас все получится. Зато Вас будет «греть» само осознание того, что Вы сделали его сами.

Как доработать устройство для контроля заряда:

Заключение

В итоге можно сказать, что самостоятельная установка контроллера заряда солнечной батареи несложна. Также при наличии должного опыта в монтаже электронных приборов можно осуществить самостоятельное создание контроллера для заряда солнечной батареи.

Источники

  • https://alter220.ru/solnce/solnechnyj-kontroller-zaryada.html
  • https://kachestvolife.club/ekologiya/solnechnaya-energiya/principy-i-shema-raboty-kontrollera-zaryada-dlya-solnechnoy-batarei-vinur
  • https://akbinfo.ru/alternativa/controller-zarjada-solnechnoj-batarei.html
  • https://e-solarpower.ru/faq/solnechnyy-kontroller-zaryada-batarei/
  • https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/kontroller-zaryada-solnechnoj-batarei.html
  • https://www.solar-battery.com.ua/kontroller-zaryada-svoimi-rukami/
  • https://altenergiya.ru/sun/kontroller-zaryada-dlya-solnechnoj-sistemy-besplatno.html

[свернуть]
Наверх
Adblock
detector