MPPT контроллер — принцип работы и алгоритмы поиска точки максимальной мощности

Дата публикации: 26 мая 2020

Если вы хотите увеличить выработку энергии вашими солнечными батареями без добавления солнечных панелей, то вам нужно заменить ваш солнечный контроллер на контроллер со слежением за точкой максимальной мощности (ТММ) солнечной батареи. Такой контроллер позволит в большинстве случаев увеличить выработку электроэнергии по сравнению с контроллерами ШИМ .

MPPT контроллеры появились на рынке в конце 80-х годов. Постепенно они стали применяться все шире и шире, и в будущем, скорее всего, все контроллеры будут иметь функцию слежения за ТММ солнечного модуля. Сейчас на рынке появились MPPT контроллеры с улучшенной схемотехникой, надежными электронными компонентами и с управлением микропроцессором.

В простых контроллерах солнечный модули подключается к аккумулятору напрямую, таким образом напряжение их сравнивается. В реальности же оптимальное напряжение солнечной батареи почти всегда отличается от напряжения на аккумуляторе. Типичный 12В аккумулятор требует для полного заряда поддерживать заряд при 14,4В в течение 2-4 часов. Эта стадия называется стадией абсорбции (насыщения).

Точка максимальной мощности солнечной батареи
Точка максимальной мощности солнечной батареи

Если посмотреть на типичную вольт-амперную характеристику солнечной батареи, можно увидеть, что выработка энергии может быть увеличена, если контроллер заряда будет следить за точкой максимальной мощности солнечной батареи.

Типичный MPPT контроллер постоянно отслеживает ток и напряжение на солнечной батарее, перемножает их значения и определяет пару ток-напряжение, при которых мощность СБ будет максимальной. Встроенный процессор также следит, на какой стадии заряда находится аккумулятор (наполнение, насыщение, выравнивание, поддержка) и на основании этого определяет, какой ток должен подаваться в аккумуляторы. Одновременно процессор может давать команды на индикацию параметров на табло (при наличии), хранение данных, и т.п.

Точка максимальной мощности может вычисляться разными способами. В простейшем случае контроллер последовательно снижает напряжение от точки холостого хода до напряжения на аккумуляторе. Точка максимальной мощности будет находиться где-то в промежутке между этими значениями.

Повышение выработки энергии солнечным модулем при слежении за точкой максимальной мощности
Повышение выработки энергии солнечным модулем при слежении за точкой максимальной мощности

Положение ТММ зависит от нескольких параметров — от освещенности модуля, температуры, разнородности используемых модулей и т.д. Контроллер периодически пытается немного «отойти» от найденной на предыдущей стадии точки в обе стороны, и если мощности при этом увеличивается, то он переходит на работу в этой точке. Теоретически, при поиске ТММ теряется немного энергии, но эта потеря очень незначительна по сравнению в той дополнительной энергией, которую обеспечивает MPPT контроллер.

Встроенный преобразователь постоянного тока поддерживает разное напряжение на входе и выходе контроллера. Это похоже на работу бесступенчатой коробки передач в автомобиле, которая поддерживает оптимальные обороты двигателя при разной скорости движения автомобиля.

Количество дополнительно полученной энергии при использовании MPPT контроллера трудно однозначно определить. Основными факторами, влияющими на дополнительную выработку. являются температура и степень заряженности аккумуляторной батареи. Наибольшая добавка к выработке будет при низких температурах модуля и разряженных батареях.

Точка максимальной мощности солнечной батареи при разных температурах модуля
Точка максимальной мощности солнечной батареи при разных температурах модуля

На рисунке справа показано, как может меняться напряжение в точке максимальной мощности при разных температурах модуля. Чем горячее солнечный модуль, тем меньше напряжение на модуле и, соответственно, выработка энергии солнечной батареей. В какие-то моменты точка максимальной мощности может быть ниже напряжения на аккумуляторе, и в этом случае вы не получите никакого выигрыша в выработке энергии по сравнению с ШИМ контроллером. Такое же влияние оказывает и частичное затенение солнечной батареи.

Поэтому обычно при использовании MPPT контроллеров нужно коммутировать солнечные батареи на более высокое напряжение. Большинство контроллеров может отслеживать точку максимальной мощности в широких пределах. Такое решение также позволит повысить выработку энергии солнечной батареей при пониженных освещенностях. Однако, не нужно делать слишком большую разницу между входным и выходным напряжением, иначе КПД контроллера падает.

Для чего нужен контроллер заряда для солнечной батареи?

Аккумуляторы, которые используются в комплекте солнечных батарей для накопления заряда, имеют ряд собственных особенностей. Они нуждаются в создании определенных условий в процессе зарядки. Необходимо своевременно ограничить ток и напряжение, не допустить слишком сильного разряда и исключить перезарядку АКБ. Обеспечить эти условия может специальное устройство, наблюдающее за блоком батарей и своевременно прекращающее все процессы, когда они достигают критических значений.

Это устройство — контроллер солнечной батареи, обеспечивающий сохранность и долговечность аккумуляторов. Обойтись без этих приборов невозможно, так как бесконтрольный заряд или разрядка всегда заканчиваются выходом АКБ из строя.

Задачи, которые решают контроллеры заряда для солнечных батарей:

  • выполнение диспетчерских функций, определение текущего режим работы и изменение его при возникновении соответствующих условий
  • ограничение величины заряда, предотвращение излишнего поглощения электроэнергии
  • наблюдение за расходованием и своевременный перевод батарей в режим зарядки

Есть контроллеры, совмещающие функции источника питания. К ним подключаются низковольтные потребители, например — осветительные приборы или иная нагрузка подобного типа. Такие системы работают в малом составе и не используются в качестве полноценного источника питания для бытовой или хозяйственной техники.

Применяемые на практике виды

На промышленном уровне налажен и осуществляется выпуск двух видов электронных устройств, исполнение которых подходит для установки в схему солнечной энергетической системы:

  1. Устройства серии PWM.
  2. Устройства серии MPPT.

Первый вид контроллера для солнечной батареи можно назвать «старичком». Такие схемы разрабатывались и внедрялись в эксплуатацию ещё на заре становления солнечной и  ветряной энергетики.

Принцип работы схемы PWM контроллера основан на алгоритмах широтно-импульсной модуляции. Функциональность таких аппаратов несколько уступает более совершенным устройствам серии MPPT, но в целом работают они тоже вполне эффективно.

Контроллер для солнечных батарей
Одна из популярных в обществе моделей контроллера заряда АКБ солнечной станции, несмотря на то, что схема устройства выполнена по технологии PWM, которую считают устаревшей

Конструкции, где применяется технология Maximum Power Point Tracking (отслеживание максимальной границы мощности), отличаются современным подходом к схемотехническим решениям, обеспечивают большую функциональность.

Но если сравнивать оба вида контроллера и, тем более, с уклоном в сторону бытовой сферы, MPPT устройства выглядят не в том радужном свете, в котором их традиционно рекламируют.

Контроллер типа MPPT:

  • имеет более высокую стоимость;
  • обладает сложным алгоритмом настройки;
  • даёт выигрыш по мощности только на панелях значительной площади.

Этот вид оборудования больше подходит для систем глобальной солнечной энергетики.

mppt контроллер для солнечных батарей
Контроллер, предназначенный под эксплуатацию в составе конструкции солнечной энергетической установки. Является представителем класса аппаратов MPPT – более совершенных и эффективных

Под нужды обычного пользователя из бытовой среды, имеющего, как правило, панели малой площади, выгоднее купить и с тем же эффектом эксплуатировать ШИМ-контроллер (PWM).

Как подобрать контроллер заряда для солнечных батарей

В первую очередь стоит обратить внимание на такие параметры, как:

  • Входное напряжение. Взгляните на информацию в техпаспорте: там указывается максимальное напряжение и напряжение «холостого хода» солнечной батареи. Первый параметр должен быть на 20% выше «холостого хода». Даже если производители указали в документациях завышенные показатели, с этим нехитрым расчетом подобрать подходящий контроллер — реально и без специалиста. Учитывайте и то, что при высокой активности Солнца (в летний период), напряжение в солнечных батареях будет на порядок выше, чем указано в техпаспорте.
  • Наличие защиты. Многие модели оснащаются дополнительной защитой от различных неприятных ситуаций: неправильное подключение полярности, короткие замыкания, удар молнии, перегрев, разрядка в ночное время и т.п. Выбирайте контроллер с учетом индивидуальных потребностей: например, если в вашем регионе грозы — частое явление, тогда защита от удара молнии пригодится.
  • Номинальный ток. Для моделей каждого типа устройства он свой. Для PWM-контроллеров номинальный ток на 10% выше тока короткого замыкания солнечного модуля. Для MPPT моделей номинальный ток вычисляется, исходя из мощности, которая должна быть равна или немного превышать произведение напряжения солнечной батареи на ток регулятора.

В период высокой инсоляции без контроллера не обойтись: случаются перегрузки, и вся гелиосистема способна выйти из строя. Чтобы этого не произошло, необходимо дополнительно рассчитать показатели номинального тока «про запас». Всегда лучше приобрести более дорогой контроллер с высокими параметрами мощности. Для вычисления показателей, необходимых для расчета «запаса», к полученным значениям по номинальному току прибавьте еще 20% мощности — этого достаточно, чтобы спасти гелиосистему от перегрузок.

Обзор контроллеров солнечной батареи: разновидности

По своему устройство различают четыре типа контроллеров (не считая самодельных):

  • OnOff — отключает заряд по достижению верхнего предела напряжения;
  • PWM — для понижения заряжающего тока при максимальных нагрузках;
  • МРРТ — сложная система, снимающая высокое напряжение с батарей с последующей оптимизацией нагрузки;
  • гибридные — созданы для комбинированных систем (солнечные модули + ветряки) для сброса избыточной энергии.

Чем сложнее модель, тем выше ее стоимость. Поэтому устройства типа «OnOff» всегда будут стоить дешевле, чем МРРТ. Необязательно покупать последнюю новинку техники, если вам необходим простой контроллер для солнечной батареи на даче. В этих случаях модели «OnOff» будет достаточно. Если вам необходимо позаботиться о гелиосистеме, работающей на постоянной основе и служащей для обеспечения электроэнергией жилого дома, тогда стоит задуматься о приобретении PWM или МРРТ моделей. Гибридные модели актуальны только для владельцев комбинированных систем. Они строятся на базе МРРТ или PWM с той разницей, что у них используются вольтамперные системы исчисления.

Обзор контроллеров солнечной батареи: разновидности

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

Характеристики устройства:

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

МРРТ-контроллер1

PWM-контроллер

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

Характеристики устройства:

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от –25 до 55 ºC.
  • Возможность зарядить АКБ с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

PWM-контроллер

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Если выбрать контроллер, который не будет соответствовать требованиям, то в лучшем случае он просто выйдет из строя, а в худшем может испортиться проводка в доме.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны.

Советы по выбору контроллера для солнечной батареи

Чтобы не совершить ошибку при покупке, учитывайте такие аспекты:

  • Мощность солнечных батарей не должна превышать мощности контроллера — это приводит к поломке. Учитывайте, что не каждое устройство располагает функцией ограничения мощности. На деле такой опцией оснащены только модели от продвинутых производителей. К примеру, линейка «Tracer A» от компании EpSolar. Подобный ограничитель указывается в технических характеристиках.
  • В расчетах учитывайте, что из-за низких температур общий показатель КПД гелиосистемы увеличивается, в то время как показатель номинальной мощности (в техпаспорте) указывается для средней температуры 25°С. Для примера: у кремниевых батарей температурный коэффициент колеблется от 0,3% до 0,5% на градус по Цельсию. Значит, для -25°С мощность увеличится на 20%. Если не брать это во внимание, то высок риск купить неподходящий контроллер.
  • Никогда не устанавливайте контроллер с меньшим номиналом — он сломается, даже если вы собираетесь использовать его для неполной нагрузки. Ситуации случаются разные, и от капризов погоды не застрахован никто.
  • Сами производители отмечают, что лучший контроллер для солнечных батарей — тот, который оснащен температурной компенсацией зарядных напряжений. От температуры аккумулятора зависит предельное напряжение зарядки. Иными словами, с наличием встроенного или подключенного температурного датчика вы сможете следить за перегревом устройства. Это позволяет избежать поломок и повысить точность работы аккумулятора.
  • Для измерения выработки энергии от Солнца учитывайте среднемесячные значения за пять-семь лет — не только последние показатели. Это позволяет увидеть широту колебаний солнечного массива и выбрать не только подходящие модули, но и соответствующий им контроллер.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.

Схема баланса напряжений
Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Недопустимо наличие в непосредственной близости от прибора источников вибраций, тепла и влажности. Место установки необходимо защитить от попадания атмосферных осадков и прямых солнечных лучей.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.

Соответствие подключений контроллера
Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.

Кабель с наконечниками
Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.

Схема подключения MPPT
Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Экран прибора покажет значение напряжения солнечной панели. Этот момент свидетельствует об успешном запуске энергетической солнечной установки в работу.

Можно ли обойтись без контроллера?

Контроллер заряда солнечной батареи выполняет всего одну, но очень важную функцию – управляет уровнем заряда АКБ. Если его не устанавливать, будет невозможно контролировать процесс заряда-разряда, он будет длиться без остановки, что неизбежно приведет к закипанию электролита и выходу аккумулятора из строя.

Есть вариант, который используют некоторые умельцы, – заменяют контроллер вольтметром. Это не удобно и мало эффективно, поскольку приходится самостоятельно управлять процессом, что не исключает человеческий фактор.

Источники

  • https://www.solarhome.ru/control/mppt
  • https://Energo.house/sol/kontroller-zaryada-solnechnoj-batarei-mrrt-ili-shim-chto-luchshe-vybrat.html
  • https://sovet-ingenera.com/eco-energy/sun/kontroller-zaryada-solnechnoj-batarei.html
  • https://altenergiya.ru/sun/kontroller-dlya-solnechnyx-batarej.html
  • https://VashUmnyiDom.ru/elektropitanie/alternativnaya-energiya/kontroller-zaryada-solnechnoj-batarei.html
  • https://e-solarpower.ru/faq/solnechnyy-kontroller-zaryada-batarei/

[свернуть]
Наверх
Adblock
detector