Все виды энергии: кинетическая, потенциальная, лучистая, химическая, механическая и др
Дата публикации: 26 мая 2020
Что такое Потенциальная Энергия?
Потенциальная энергия — это энергия, накопленная внутри объекта. Эта накопленная энергия основана на состоянии, расположении или положении объекта.
В качестве альтернативы, вы можете представить ее как энергию, которая имеет «потенциал» для работы. При изменении состояния, расположения или положения объекта накопленная энергия высвобождается.
В то время как потенциальную энергию можно определить как скрытую энергию, накопленную в веществе в состоянии покоя, другая ее форма, называемая кинетической энергией, выражается веществом, находящимся в движении.
Типы потенциальной энергии
Существуют различные типы потенциальной энергии, каждый из которых связан с определенным типом силы.
Четыре основных типа:
- Гравитационная Потенциальная Энергия: энергия в объекте, когда она удерживается вертикально на некоторой высоте.
- Упругая потенциальная энергия: энергия, запасенная в объекте, когда он растягивается или сжимается.
- Потенциальная электрическая энергия: энергия в объекте за счет его заряда.
- Химическая потенциальная энергия: энергия, запасенная в химических связях вещества.
Каждый из них измеряется по-разному. Например, потенциальная энергия гравитации (PE) пропорциональна массе (m) объекта, силе тяжести (g) и высоте (h), на которой удерживается объект.
PE = m. g. h
Чем больше масса объекта и чем выше он удерживается, тем больше будет его потенциальная энергия. Как и все другие формы энергии, потенциальная энергия измеряется в килограммах-метрах в квадрате за секунду в квадрате (кг м2 / С2 ) или Джоуле (Дж).
Чтобы лучше объяснить этот феномен, мы собрали несколько интересных примеров потенциальной энергии, которую вы видите в своей повседневной жизни.
1. Маятник
Тип: Гравитационная потенциальная энергия
В простом маятнике, груз прикреплен к концу почти безмассовой нити, которая качается вокруг оси. Когда маятник качается взад и вперед, энергия превращается между потенциальной энергией и кинетической энергией.
Груз несет на одном конце максимальную потенциальную энергию. По мере того, как он под действием силы тяжести качается в самую нижнюю точку, его потенциальная энергия начинает преобразовываться в кинетическую энергию.
Потенциальная энергия груза достигает нуля (а кинетическая энергия достигает максимума) в самой нижней точке. К тому времени, когда он достигает другого конца, его кинетическая энергия полностью преобразуется в потенциальную энергию.
Процесс повторяется несколько раз, пока маятник не остановится. Поскольку часть энергии теряется в тепле и трении, вам нужна внешняя энергия, чтобы поддерживать движение маятника.
2. Камень на краю скалы
Тип: Гравитационная потенциальная энергия
Камень, расположенный на краю скалы, обладает потенциальной энергией, которая пропорциональна массе камня и высоте скалы. Если вы столкнете его с утеса, та же самая потенциальная энергия будет преобразована в кинетическую энергию.
Как вы можете видеть на изображении, тяжелый валун из песчаника опасно лежит на крутом склоне. Он обладает потенциальной энергией относительно склона, так как кажется, что он готов упасть в любой момент и скатиться на несколько метров в долину внизу.
3. Вода за плотинами
Тип: Гравитационная потенциальная энергия
Вода за плотиной гидроэлектростанции хранит огромную потенциальную энергию, так как она находится на гораздо более высоком уровне, чем вода с другой стороны плотины. Когда ворота таких плотин открываются, вода начинает падать, и накопленная потенциальная энергия преобразуется в кинетическую энергию, которая превращает турбины для производства электроэнергии.
Помимо производства электричества, водные плотины также строятся с целью контроля речного стока и регулирования наводнений.
4. Ветви деревьев
Тип: Гравитационная потенциальная энергия
Ветви деревьев обладают потенциальной энергией, потому что они могут упасть на землю. Чем тяжелее ветка и чем выше она находится к земле, тем больше потенциальной энергии она имеет.
Аналогичным образом, плод, свисающий с верхней ветви, также обладает некоторой потенциальной энергией. Когда плод падает, его энергия положения (потенциальная энергия) преобразуется в энергию движения (кинетическую энергию). И когда он ударяется о землю, кинетическая энергия преобразуется в тепловую энергию.
5. Американские горки
Тип: Гравитационная потенциальная энергия
Большинство американских горок используют гравитацию для перемещения вагонов по трассе. Большая цепь (прицепленная к нижней части вагонов) тянет вагоны на вершину первого холма, который является самой высокой точкой на американских горках. Как только вагоны достигают вершины холма, они освобождаются от цепи.
В американских горках работают две формы энергии: потенциальная энергия и кинетическая энергия. Одна из них преобразуется в другую на протяжении всей поездки, в то время как значительное количество энергии теряется из-за сопротивления воздуха и трения.
Потенциальная гравитационная энергия вагонов наименьшая в самой низкой точке американских горок и наибольшая в самой высокой точке.
6. Пружина
Тип: Эластичная потенциальная энергия
Энергия, накопленная в сжимаемых/растягивающихся объектах, называется эластичной потенциальной энергией. Чем больше объект может сжиматься/растягиваться, тем более упругая потенциальная энергия (U) у него есть. Она пропорциональна константе силы пружины (k) и длине струны сжатия/растяжения (x) в метрах.
Когда пружина растягивается или сжимается, она получает определенное количество потенциальной энергии. Это равно кинетической энергии, которая использовалась для растяжения или сжатия пружины.
Как только пружина высвобождается, потенциальная энергия снова преобразуется в кинетическую энергию. Однако процесс преобразования энергии не является полностью эффективным, так как значительная часть энергии теряется при нагревании и трении.
7. Лук и стрелы
Тип: Эластичная потенциальная энергия
Лук и стрела — это традиционная система оружия дальнего боя, которая состоит из упругого пускового инструмента (лук) и длинноствольных снарядов (стрел).
Лучник использует свои мышцы для приложения силы к струне, сгибая конечности назад. Сила, которую он оказывает на струну, известна как «вытягивание веса». Упругая энергия теперь является потенциальной энергией, которая может быть использована для запуска стрелки (путем освобождения струны).
Чем больше вы деформируете конечности, оттягивая их назад, тем больше вы увеличиваете накопленную потенциальную энергию. Очевидно, есть предел тому, сколько силы вы можете приложить, чтобы натянуть лук и сколько силы лук может выдержать без трещин.
Единицы измерения и обозначения
Количество энергии измеряется в джоулях (Дж). Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:
- W – полная энергия системы.
- Q – тепловая.
- U – потенциальная.
Виды энергии
Энергия существует в самых разных видах. Кроме тепловой, световой и энергии звука есть еще химическая энергия, кинетическая и потенциальная. Электрическая лампочка излучает тепловую и световую энергию. Энергия звука передается при помощи волн. Волны вызывают вибрацию барабанных перепонок, и поэтому мы слышим звуки. Химическая энергия высвобождается в ходе химических реакций. Продукты питания, топливо (уголь, нефть, бензин), а также батарейки — это хранилища химической энергии. Пищевые продукты — это склады химической энергии, высвобождающейся внутри организма.
Движущиеся тела обладают кинетической энергией, т.е. энергией движения. Чем быстрее движется тело, тем больше его кинетическая энергия. Теряя скорость, тело теряет кинетическую энергию. Ударяясь о неподвижный объект, движущееся тело передает ему часть своей кинетической энергии и приводит его в движение. Часть энергии, получаемой с пищей, животные обращают в кинетическую.
Потенциальной энергией обладают тела, находящиеся в силовом поле, например в гравитационном или магнитном. Эластичные или упругие тела (обладающие способностью вытягиваться) имеют потенциальную энергию натяжения или упругости. Маятник обладает максимальной потенциальной энергией, когда находится в верхней точке. Разворачиваясь, пружина освобождает свою потенциальную энергию и заставляет колёсики в часах вращаться. Растения получают энергию от Солнца и производят питательные вещества — создают запасы химической энергии.
Кинетическая
Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Единица измерения в системе СИ — Джоуль. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.
Магнитная энергия
Магниты используются для захвата магнитных материалов, таких как гайки и болты.
Способность объекта выполнять работу из-за его положения в магнитном поле является потенциальной энергией магнитного поля. Магниты имеют магнитное поле и две области, называемые магнитными полюсами. Равные полюса отбрасываются, а разные полюса притягиваются. Наиболее используемые магнитные материалы – это железо и его сплавы.
Например, железный винт, который приближается к магниту, но не касается его, обладает потенциальной магнитной энергией. Объекты движутся в направлении, которое уменьшает их потенциальную магнитную энергию.
Микрофоны, например, хорошо работают благодаря магнитной энергии. Операция заключается в следующем: микрофон имеет мембрану, которая вибрирует со звуком. Эта вибрация передается на кабель, обмотанный вокруг магнита, который посылает электрический сигнал на усилитель, делая звук громче. В этом случае мы имеем преобразование звуковой энергии в магнитную энергию, затем электрическую энергию и затем звуковую энергию.
Железные дороги с электромагнитной подвеской – еще один пример того, как мы можем использовать магнитную энергию для выполнения работы. Железная дорога движется через магнитное поле, которое движется вдоль ферромагнитного пути.
Лучистая энергия
Свет – это лучистая энергия, которая распространяется волнами.
Энергия в форме света или тепла – это лучистая энергия, более известная как излучение. Излучение – это электромагнитные волны, которым не нужны средства для перемещения подобно звуковым волнам, чтобы они могли перемещаться в космическом пространстве. Источником электромагнитных волн являются электроны, которые вибрируют, создавая электрическое поле и магнитное поле.
Различные типы лучистой энергии или излучения (потоки) упорядочены по уровням энергии в электромагнитном спектре. Они путешествуют в космосе со скоростью 300 миллионов метров в секунду, то есть со скоростью света.
Рентгеновские и гамма-лучи – это невидимые излучения с большим количеством энергии. Оба имеют важные применения в медицине. Рентген используется для диагностики переломов костей, в то время как гамма-излучение используется для диагностики неврологических заболеваний, таких как болезнь Паркинсона и Альцгеймера, или при заболеваниях сердца.
В ультрафиолетовых (УФ) лучей представляют собой тип невидимого излучения , создаваемого Солнцем и некоторых специальных ламп. Эти лучи отвечают за загар, который мы приобретаем, когда подвергаем себя воздействию солнца. Однако чрезмерное воздействие ультрафиолетовых лучей может вызвать ожоги и рак кожи. Вот почему вы должны защищать свое тело, когда вы долго на солнце, особенно кожу (чтобы защититься от рака кожи) и глаза.
Видимый свет излучения – это то, что человеческий глаз может воспринимать. Обычно мы видим белый свет, который является не более чем смесью огней разных цветов. Свет находится в энергетических пакетах, называемых фотонами, которые не имеют массу.
Инфракрасное излучение, микроволна и радиоволны менее энергичное излучение электромагнитного спектра. Радиоволны и микроволны – это волны, используемые в коммуникациях для передачи звука и изображений.
Гравитационная
Гравитационная энергия — потенциальная энергия системы тел (частиц), обусловленная их взаимным тяготением. Гравитационно-связанная система — система, в которой гравитационная энергия больше суммы всех остальных видов энергий (помимо энергии покоя). Общепринята шкала, согласно которой для любой системы тел, находящихся на конечных расстояниях, гравитационная энергия отрицательна, а для бесконечно удалённых, то есть для гравитационно не взаимодействующих тел, гравитационную энергия равна нулю. Полная энергия системы, равная сумме гравитационной и кинетической энергии постоянна, для изолированной системы гравитационная энергия является энергией связи. Системы с положительной полной энергией не могут быть стационарными.
Солнечная энергия
Солнце – самый важный источник энергии для жизни на Земле.
Солнечная энергия – это лучистая энергия солнца. Он путешествует в пространстве, пока не достигнет Земли в виде электромагнитных волн. Большая часть солнечного излучения, которое достигает атмосферы Земли, – это ультрафиолетовое излучение, видимый свет и инфракрасные лучи.
Солнце состоит из водорода и гелия. В этом случае энергия исходит от процесса ядерного синтеза: ядра водорода объединяются, образуя гелий и лучистую энергию.
Люди научились использовать солнечную энергию. Сегодня энергия солнечного света используется для отопления домов и зданий, увеличения их тепловой энергии. Видимый солнечный свет проходит через стекла окон и поглощается материалами внутри комнаты. Это заставляет материалы нагреваться.
Лучистая энергия Солнца ответственна за существование жизни на Земле. Растения собирают эту энергию для производства пищи, превращая ее в химическую энергию. Солнечная энергия управляет движением воздуха в атмосфере, вызывая ветры.
Ядерная
Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях.
Энергия связи — энергия, которая требуется, чтобы разделить ядро на отдельные нуклоны, называется энергией связи. Энергия связи, приходящаяся на один нуклон, неодинакова для разных химических элементов и, даже, изотопов одного и того же химического элемента.
Химический потенциал
Химический потенциал — один из термодинамических параметров системы, а именно энергия добавления одной частицы в систему без совершения работы.
Энергия взрыва
Взрыв — физический или/и химический быстропротекающий процесс с выделением значительной энергии в небольшом объёме за короткий промежуток времени, приводящий к ударным, вибрационным и тепловым воздействиям на окружающую среду и высокоскоростному расширению газов.
При химическом взрыве, кроме газов, могут образовываться и твёрдые высокодисперсные частицы, взвесь которых называют продуктами взрыва. Энергию взрыва иногда измеряют в тротиловом эквиваленте — мере энерговыделения высокоэнергетических событий, выраженной в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.
Превращение энергии
Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую. В лампочке электрическая энергия превращается в тепловую и световую. Мы привели пример этой «энергетической цепочки» чтобы показать вам, как один вид энергии превращается в другой.
Уголь — это спрессованные останки растении, живших много лет назад. Когда-то они получили энергию от Солнца. Уголь представляет собой запас химической энергии. Когда уголь сгорает, его химическая энергия прекращается в тепловую. Тепловая энергия нагревает воду, и она испаряется. Пар вращает турбину. производя тем самым кинетическую энергию — энергию движения. Генератор преобразует кинетическую энергию в электрическую. Разнообразные устройства — лампы, телевизоры, обогреватели, магнитофоны — потребляют электроэнергию и переводят в звук, свет и тепло.
Конечными результатами во многих процессах превращения энергии являются свет и тепло. Хотя энергия не пропадает, она уходит в пространство, и её трудно уловить и использовать.
Закон сохранения энергии
Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее – в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.
Закон энергии способен объяснить многие физические явления. Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.
В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени — величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.
Особенности энергии
Энергия – это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент импульса, импульс. Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.
Внутрення энергия тел
Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.
Внутренняя энергия газа
Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.
Использование энергии
С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к невозобновимым ресурсам.
К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.
Невозобновляемые ресурсы имеют следующие запасы (в джоулях):
- ядерная энергия – 2 х 1024;
- энергия газа и нефти – 2 х 10 23;
- внутренне тепло планеты – 5 х 1020.
Годовая величина возобновляемых ресурсов Земли:
- энергия Солнца – 2 х 1024;
- ветер – 6 х 1021;
- реки — 6,5 х 1019;
- морские приливы — 2,5 х 1023.
Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.
Энергетические ресурсы
Энергия нужна нам для освещения и обогрева жилищ, для приготовления пищи, для того, чтобы могли работать заводы и двигаться автомобили. Эта энергия образуется при сгорании топлива. Есть и другие способы получения энергии — к примеру, ее производят гидроэлектростанции. Для приготовления пищи и обогрева жилья почти половина населения Земли сжигает дрова, навоз или уголь.
Древесина, уголь, нефть и природный газ называются невозобновимыми ресурсами, так как их используют только один раз. Солнце, ветер, вода — это возобновимые энергоресурсы, так как сами они не исчезают при производстве энергии. В своей деятельности человек использует для добычи энергии ископаемые ресурсы – 77%, древесину – 11%, возобновляемые энергоресурсы – 5% и ядерную энергию – 3%. Уголь, нефть и природный газ мы называем ископаемым топливом, так как мы добываем их из недр Земли. Образовались они из останков растений и животных. Почти 20% используемой нами энергии производится из угля.
При сгорании топлива в атмосферу попадают углекислый газ и другие газы. В этом отчасти заключается причина таких явлений, как кислотные дожди и парниковый эффект. Только около 5 процентов энергии добывается из возобновимых источников. Это энергия Солнца, воды и ветра. Еще один возобновимый источник энергии — газ, образующийся при гниении. Когда органические вещества гниют, выделяются газы, в частности метан. Из него в основном и состоит природный газ, который используется для обогрева домов и нагревания воды. На протяжении нескольких тысячелетий люди используют энергию ветра для передвижения парусных судов и вращения ветряных мельниц. Ветер также может производить электричество и перекачивать воду.
Источники энергии
Условно источники энергии можно поделить на два типа: невозобновляемые и постоянные. К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, неэкологична, и многие из них истощаются. К постоянным источникам можно отнести энергию солнца, энергию, получаемую на ГЭС и т. д.
Невозобновляемые ресурсы энергии и их величина (Дж) [10]
Вид ресурса | Запасы |
Термоядерная энергия | 3,6*1026 |
Ядерная энергия | 2*1024 |
Химическая энергия нефти и газа | 2*1023 |
Внутреннее тепло Земли | 5*1020 |
Возобновляемые ресурсы энергии и их годовая величина (Дж) [10]
Вид ресурса | Запасы |
Солнечная энергия | 2*1024 |
Энергия морских приливов | 2,5*1023 |
Энергия ветра | 6*1021 |
Энергия рек | 6,5*1019 |
Энергия и работа
Энергия является мерой способности физической системы совершить работу. Например, изменение полной механической энергии тела численно равно величине механической работы, совершённой над телом. Поэтому количественно энергия и работа выражаются в одних единицах.
Потребление энергии
Существует довольно много форм энергии, большинство из которых так или иначе используются в энергетике и различных современных технологиях.
Темпы энергопотребления растут во всем мире, поэтому на современном этапе развития цивилизации наиболее актуальна проблема энергоэффективности и энергосбережения.
- https://new-science.ru/15-luchshih-primerov-potencialnoj-energii/
- https://FB.ru/article/238418/energiya—eto-potentsialnaya-i-kineticheskaya-energiya-chto-takoe-energiya-v-fizike
- https://www.polnaja-jenciklopedija.ru/nauka-i-tehnika/jenergija.html
- https://dic.academic.ru/dic.nsf/ruwiki/7291
- https://yznavai.ru/tipy-jenergii/
- https://ru.wikipedia.org/wiki/%D0%AD%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D1%8F