Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики

Дата публикации: 31 октября 2013

Гибкие солнечные батареиВ настоящее время порядка 80-85% производства солнечных батарей приходится на кристаллические модули. Но по заверениям специалистов этой области, будущее все-таки за тонкопленочной технологией. Ее главное достоинство, способное обеспечить ей лидирующие позиции, это более низкая себестоимость. Модули, производимые с использованием тонкопленочной технологии, получили название гибкие солнечные батареи, благодаря тому, что их эластичность и малый вес позволяют монтировать солнечные модули на любой поверхности и даже вшивать их в одежду.

Для производства гибких модулей используют пленки из полимерных материалов, аморфного кремния, алюминия, теллурида кадмия и других полупроводников. Чаще всего их применяют в качестве переносных зарядных устройств, так называемых складных солнечных батарей, для ноутбуков, видеокамер, мобильных телефонов и другой электроники, не требующей большой мощности. Для выработки значительного количества энергии потребуется и большая площадь модулей.

Подробнее о тонкопленочной технологии

Первые тонкопленочные солнечные батареи изготавливались с использованием аморфного кремния, который наносили тонким слоем на поверхность подложки. Их КПД составлял всего 4-5%, да и срок службы оставлял желать лучшего. Второе поколение аморфных модулей уже имело КПД на 2-3% больше, а срок эксплуатации практически сравнялся со сроком службы кристаллических модулей. А вот КПД третьего поколения модулей увеличилось уже до 12%. Так что прогресс на лицо.

При производстве складных солнечных батарей и гибких модулей больших размеров, чаще всего применяют теллурид кадмия и селенид меди-индия. Использование этих полупроводников дает увеличение коэффициента полезного действия от 5 до 10%. А учитывая, что ученые-физики борются за каждый дополнительный процент, такая разница очень ощутима. Более подробно о производстве солнечных батарей по тонкопленочной технологии здесь.

Особенности тонкопленочных батарей:

  • Хорошо работают даже при рассеянном свете, поэтому суммарная годовая выработка мощности на 10-15% больше, чем у кристаллических модулей.
  • Более низкая стоимость производства, следовательно, данный вид солнечных батарей обойдется Вам дешевле.
  • Большую эффективность показывают в системах с мощностью более 10кВт.
  • При равном показателе вырабатываемой мощности, площадь тонкопленочных модулей примерно в 2,5 раза больше, чем у кристаллических.
  • Требуют использование высоковольтных контроллеров и инверторов.

Случаи, когда применение тонкопленочных модулей обосновано:

  • В регионах, где преобладает пасмурная погода. Модули, выполненные по тонкопленочной технологии, лучше поглощают рассеянный свет.
  • В странах с жарким климатом. При высокой температуре тонкопленочные солнечные батареи показывают большую эффективность.
  • Есть необходимость монтирования панелей в здание либо требуется их использование в качестве дизайнерских задумок или конструкторских решений, например, для отделки фасада.
  • Потребность в модулях с частичной прозрачностью до 20%.

От плоской формы к цилиндрической

Цилиндрические солнечные батареи Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $.

До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.

Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии. Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым.

Многопереходные солнечные элементы

В большинстве производимых в настоящее время солнечных элементах реализован один p-n-переход. То есть свободные электроны в таком элементе создают только те фотоны, которые обладают энергией больше или равной ширине запрещенной зоны. Чтобы преодолеть это ограничение учеными был разработан новый вид солнечных элементов, получивших название каскадные элементы. Они имеют многослойную структуру, состоящую из солнечных элементов, ширина запрещенной зоны которых различна.

Самые перспективные гибкие солнечные батареи, изготовленные с использованием каскадных элементов, имеют 3 p-n-перехода. Верхний слой формируют из сплава на основе a-Si:H, для второго используют сплав a-SiGe:H, содержащий 10-15% германия, для третьего слоя процентное содержание германия в сплаве увеличивают до 40-50%. С каждым последующим слоем ширина запрещенной зоны уменьшается, поэтому каждый следующий слой поглощает те фотоны, которые прошли через предыдущий. В таблице ниже представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Теоретическое значение КПД Ожидаемое значение КПД Реализованное значение КПД
1 p-n-переход 30 27 25,1
2 p-n-перехода 36 33 30,3
3 p-n-перехода 42 38 31,0
4 p-n-перехода 47 42
5 p-n-переходов 49 44

Самые интересные достижения в мире тонкопленочных модулей

2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.

Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.

Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.

Складная солнечная батарея Компания ICP Solar Technologies представила оригинальную складную солнечную батарею. Ее достаточно раскатать в солнечном месте и можно подключать устройство, которое необходимо зарядить. Мощность батареи 5 Вт при напряжении питания 12 В. Согласитесь, незаменимый вариант для всех туристов, хотя и не единственный. Разработкой подобных переносных СБ занимаются различные фирмы. Так не меньшей популярностью пользуется складная солнечная батарея Foldable Solar Chargers, максимальная мощность которой составляет 190 Вт.

Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты. Промышленное производство «солнечной» ткани намечено на март 2015 года.

Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.

Статью подготовила Абдуллина Регина

В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!

Наверх