Бывает ли электричество в живых организмах

Дата публикации: 28 ноября 2019

Биоэлектричество относится к электрическим потенциалам и токам, которые возникают внутри живых организмов или производятся ими. Это результат преобразования химической энергии в электрическую. Такие потенциалы генерируются рядом различных биологических процессов и используются клетками для управления метаболизмом, проведения импульсов по нервным волокнам, для регулирования мышечного сокращения.

У большинства организмов биоэлектрические потенциалы различаются по силе: от одного до нескольких сотен милливольт. Наиболее важное различие между электричеством в живых организмах и типом электрического тока, используемого для производства света, тепла или энергии, заключается в том, что биоэлектрический ток представляет собой поток ионов (атомов или молекул, несущих электрический заряд), а стандартное электричество — это движение электронов.

Бывает ли электричество в живых организмах

Историческая справка

Биоэлектрические эффекты были известны с древних времён по активности таких электрических рыб, как нильский сом, электрический угорь. Сейчас измерение биоэлектрических потенциалов стало обычной практикой в ​​клинической медицине. Но до XVII века европейские врачи и философы считали, что нервные импульсы передаются мозгу через какую-то органическую жидкость. Эксперименты двух итальянцев, врача Луиджи Гальвани и физика Алессандро Вольта, показали, что истинное объяснение нервной проводимости — это биоэлектричество.

Бывает ли электричество в живых организмах

В XIX веке Эмиль Дюбуа-Реймон, изобрёл и усовершенствовал приборы, способные измерять очень малые электрические потенциалы и токи, генерируемые живой тканью. Один из его учеников, немецкий учёный по имени Юлиус Бернштейн, полагался на гипотезу, что нервные и мышечные волокна поляризованы, с положительными ионами снаружи и отрицательными внутри, поэтому ток, который может быть измерен, — результат изменения этой поляризации. В начале XX столетья несколько британских исследователей определили химические вещества, участвующие в передаче информации между нервами и мышцами.

Потенциал клеточной мембраны

Все клетки животных обладают электрическими свойствами, обусловленными способностью клеточной мембраны поддерживать неравные заряды внутри и снаружи клетки. Клеточная оболочка полупроницаемая, это означает, что она образует селективный барьер для ионов, являющихся электрически заряженными атомами.

Таким образом, через мембрану накапливается две формы энергии:

  • химическая (разница концентрации ионов);
  • электрическая.

Клетки, способные к электрической активности, показывают потенциал покоя, равный примерно 50 милливольтам. Когда клетка активирована, потенциал покоя может внезапно измениться, результат — внешняя её сторона становится отрицательной, а внутренняя — положительной. Это состояние сохраняется короткое время, после чего всё возвращается в исходное положение покоя, так что «источник дипольного тока» существует очень маленький период времени.

Эти токи, возникающие внутри активной мембраны, функционально значимы близко к месту их происхождения, но некоторые живые существа, такие как рыбы и медузы, эволюционно адаптировали этот случайный ток для фактического использования. Вырабатывающие электричество организмы обзавелись специальными органами, способными генерировать значительные разряды до 1 тыс. вольт, например, электрический скат. Кто-то из них пользуется своими способностями для самообороны, а для кого-то это способ добывать еду.

Электричество в организме человека

Все клетки используют свои биоэлектрические потенциалы, чтобы контролировать метаболические процессы, но некоторые специально используют токи для отличительных физиологических функций: нервные и мышечные клетки. Информация переносится импульсами (называемыми потенциалами действия), проходящими по нервным волокнам. Подобные импульсы в мышцах сопровождают мышечные сокращения. Среди других клеток, где специализированные функции зависят от поддержания биоэлектрических потенциалов, есть:

  • рецепторы, чувствительные к свету, звуку, прикосновению;
  • клетки, которые выделяют гормоны или другие вещества, участвующие в общем метаболизме.

Как дополнение к потенциалам, возникающим в нервных или мышечных клетках, науке известны относительно устойчивые или медленно меняющиеся потенциалы. Они возникают:

  • там, где клетки были повреждены;
  • когда большой орган непарный (полушария мозга, разные участки кожи);
  • при активной работе железы (фолликулы щитовидки);
  • специальных структурах во внутреннем ухе.

В организме человека накапливается и статическое электричество. Когда электронам некуда деваться, заряд накапливается на поверхностях до тех пор, пока он не достигнет критического максимума и не разрядится крошечной молнией. Хотя возникающая внезапная мышечная реакция неприятна, обычно она безвредна.

Электричество в организме человека

Биоэлектричество — одна из основных форм энергии в организме человека. Движущиеся потенциалы действия — это основа для центральных функций организма, от которых зависит:

  • проводимость двигательных, вегетативных или сенсорных сообщений по нервам;
  • сокращение мышц;
  • функция мозга.

В частности, двигательные нервные сигналы приводят к сокращению мышц, вегетативные — контролируют дыхание и сердцебиение, сенсорные — собирают всю информацию из внешнего мира, включая предупреждения о повреждениях организма (боль). Измеряя биоэлектрические потенциалы в органах и тканях, люди сейчас могут диагностировать такие заболевания, как инфаркт миокарда, а также создавать беспроводные биоэлектрические записывающие устройства, которые используются в кибермедицине.

Наверх