Вспоминаем физику: теплота

Дата публикации: 6 февраля 2020

Когда мы будем обсуждать способы отоплении дома, варианты снижения утечек тепла, мы должны понимать, что такое тепло, в каких единицах оно измеряется, как передается и как теряется. На этой странице будут приведены основные сведения из курса физики, необходимые для рассмотрения всех перечисленных вопросов.

Теплота — один из способов передачи энергии

Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой.

В строгом смысле теплота представляет собой один из способов передачи энергии, и физический смысл имеет лишь количество энергии, переданное системе, но слово «тепло-» входит в такие устоявшиеся научные понятия, как поток тепла, теплоёмкость, теплота фазового перехода, теплота химической реакции, теплопроводность и пр. Поэтому там, где такое словоупотребление не вводит в заблуждение, понятия «теплота» и «количество теплоты» синонимичны. Однако этими терминами можно пользоваться только при условии, что им дано точное определение, и ни в коем случае «количество теплоты» нельзя относить к числу первоначальных понятий, не требующих определения. Во избежание ошибок под понятием «теплота» следует понимать именно способ передачи энергии, а количество переданной этим способом энергии обозначают понятием «количество теплоты». Рекомендуется избегать такого термина, как «тепловая энергия».

Теплота — это кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже).

Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе СИ единицей энергии является джоуль (Дж). Допускается также применение внесистемной единицы количества теплоты — калории: международная калория равна 4,1868 Дж.

Теплообмен и теплопередача

ТеплопередачаТеплопередача — это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда). Существуют три основных вида теплопередачи: теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью. Теплопроводность стержня оценивается величиной теплового потока, который зависит от коэффициента теплопроводности, площади поперечного сечения, через которое передается теплота и градиента температуры (отношения разности температур на концах стержня к расстоянию между ними). Единицей теплового потока является ватт.

ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(м^2*К)
Металлы
Алюминий ___________________205
Бронза _____________________105
Вольфрам ___________________159
Железо ______________________67
Медь _______________________389
Никель ______________________58
Свинец ______________________35
Цинк _______________________113
Другие материалы
Асбест _______________________0,08
Бетон ________________________0,59
Воздух _______________________0,024
Гагачий пух (неплотный) ______0,008
Дерево (орех) ________________0,209
Опилки _______________________0,059
Резина (губчатая) ____________0,038
Стекло _______________________0,75

Конвекция

Конвекция — это теплообмен за счет перемещения масс воздуха или жидкости. При подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент конвективного теплопереноса можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается.

Тепловое излучение

Третий вид теплопередачи — лучистый теплообмен — отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения составляет примерно 1,37 Вт/м2.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры.

Теплоёмкость

Различные вещества обладают разной способностью накапливать тепло; это зависит от их молекулярной структуры и плотности. Количество теплоты, необходимое для повышения температуры единицы массы вещества на один градус (1 °С или 1 К), называется его удельной теплоемкостью. Теплоемкость измеряется в  Дж/(кг•К).

Обычно различают теплоемкость при постоянном объёме (CV) и теплоемкость при постоянном давлении (СP), если в процессе нагревания поддерживаются постоянными соответственно объём тела или давление. Например, чтобы нагреть на 1 К один грамм воздуха в воздушном шаре, требуется больше теплоты, чем для такого же его нагрева в герметичном сосуде с жесткими стенками, поскольку часть энергии, сообщаемой воздушному шару, расходуется на расширение воздуха, а не на его нагревание. При нагревании при постоянном давлении часть теплоты идёт на производство работы расширения тела, а часть — на увеличение его внутренней энергии, тогда как при нагревании при постоянном объёме вся теплота расходуется на увеличение внутренней энергии; в связи с этим СР всегда больше, чем CV. У жидкостей и твёрдых тел разница между СР и CV сравнительно мала.

Тепловые машины

Тепловые машины — это устройства, преобразующие теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Одной из наиболее известных тепловых машин является паровая турбина, использующаяся на современных тепловых электростанциях. Упрощенная схема такой электростанции на рисунке 1.

Схема паротурбинной электростанции

Рис. 1. Упрощенная схема паротурбинной электростанции, работающей на ископаемом топливе.

Рабочую жидкость — воду — превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Другим примером тепловой машины может служить бытовой холодильник, схема которого представлена на рис. 2.

Рис.2. Схема работы холодильника.

Рис.2. Схема работы холодильника.

В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника — фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

Наверх
Adblock
detector